
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Vectors and Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Matrix Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Hilbert Spaces, Sequence Spaces and Function Spaces . . 33
2.2.4 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Optimization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.1 Vector Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Necessary and Sufficient Conditions for Solutions . . . . . . 45
2.3.3 Gradient-Type Optimization Methods. . . . . . . . . . . . . . . . 48
2.4 Least-Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.1 Full-Rank Overdetermined Least-Squares Problem . . . . . 64
2.4.2 Generic Least-Squares Problem . . . . . . . . . . . . . . . . . . . . . 65
2.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Appendix 2A Proof of Theorem 2.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Appendix 2B Some Terminologies of Functions . . . . . . . . . . . . . . . . . . 72
Appendix 2C Proof of Theorem 2.33. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Appendix 2D Proof of Theorem 2.36. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Appendix 2E Proof of Theorem 2.38. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Appendix 2F Proof of Theorem 2.46. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Computer Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
x Contents
3 Fundamentals of Statistical Signal Processing . . . . . . . . . . . . . . 83
3.1 Discrete-Time Signals and Systems . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.1 Time-Domain Characterization. . . . . . . . . . . . . . . . . . . . . . 83
3.1.2 Transformation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.1.3 Transform-Domain Characterization . . . . . . . . . . . . . . . . . 91
3.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.1 Statistical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.3 Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.4 Some Useful Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3 Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.1 Statistical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.2 Stationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.3.3 Cyclostationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.4 Estimation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.4.1 Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.4.2 Properties of Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.4.3 Maximum-Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 158
3.4.4 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.4.5 Minimum Mean-Square-Error Estimation . . . . . . . . . . . . . 164
3.4.6 Wiener Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.4.7 Least-Squares Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Appendix 3A Relationship between Cumulants and Moments . . . . . . 172
Appendix 3B Proof of Theorem 3.47. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Appendix 3C Proof of Theorem 3.52. . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Computer Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4 SISO Blind Equalization Algorithms . . . . . . . . . . . . . . . . . . . . . . . 183
4.1 Linear Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.1.1 Blind Equalization Problem . . . . . . . . . . . . . . . . . . . . . . . . 183
4.1.2 Peak Distortion and MMSE Equalization Criteria . . . . . 187
4.2 SOS Based Blind Equalization Approach: Linear Prediction . . . 190
4.2.1 Forward and Backward Linear Prediction . . . . . . . . . . . . . 191
4.2.2 Levinson–Durbin Recursion. . . . . . . . . . . . . . . . . . . . . . . . . 196
4.2.3 Lattice Linear Prediction Error Filters . . . . . . . . . . . . . . . 202
4.2.4 Linear Predictive Deconvolution . . . . . . . . . . . . . . . . . . . . . 205
4.3 HOS Based Blind Equalization Approaches . . . . . . . . . . . . . . . . . 209
4.3.1 Maximum Normalized Cumulant Equalization
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.3.2 Super-Exponential Equalization Algorithm . . . . . . . . . . . 214
4.3.3 Algorithm Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3.4 Algorithm Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Contents xi
4.4 Simulation Examples for Algorithm Tests . . . . . . . . . . . . . . . . . . . 231
4.5 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
4.5.1 Seismic Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
4.5.2 Speech Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
4.5.3 Baud-Spaced Equalization in Digital Communications . . 252
4.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Appendix 4A Proof of Property 4.17. . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Computer Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5 MIMO Blind Equalization Algorithms . . . . . . . . . . . . . . . . . . . . . 275
5.1 MIMO Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . 275
5.1.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 275
5.1.2 Smith–McMillan Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
5.2 Linear Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
5.2.1 Blind Equalization Problem . . . . . . . . . . . . . . . . . . . . . . . . 287
5.2.2 Peak Distortion and MMSE Equalization Criteria . . . . . 290
5.3 SOS Based Blind Equalization Approaches . . . . . . . . . . . . . . . . . 292
5.3.1 Blind SIMO Equalization. . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.3.2 Blind MIMO Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . 300
5.4 HOS Based Blind Equalization Approaches . . . . . . . . . . . . . . . . . 304
5.4.1 Temporally IID Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
5.4.2 Temporally Colored Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 314
5.5 Algorithm Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Appendix 5A Proof of Property 5.34. . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Appendix 5B Proof of Property 5.35. . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Appendix 5C A GCD Computation Algorithm. . . . . . . . . . . . . . . . . . . 329
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Computer Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6 Applications of MIMO Blind Equalization Algorithms . . . . . 335
6.1 Fractionally Spaced Equalization in Digital Communications . . 335
6.2 Blind Maximum Ratio Combining . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.3 SIMO Blind System Identification . . . . . . . . . . . . . . . . . . . . . . . . . 342
6.3.1 MIMO-MNC Equalizer–System Relation . . . . . . . . . . . . . 344
6.3.2 Analysis on System Identification Based on
MIMO-MNC Equalizer–System Relation . . . . . . . . . . . . . 345
6.3.3 SIMO Blind System Identification Algorithm . . . . . . . . . 346
6.4 Multiple Time Delay Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 351
6.4.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
6.4.2 MTDE with Space Diversity Gain . . . . . . . . . . . . . . . . . . . 352
6.5 Blind Beamforming for Source Separation . . . . . . . . . . . . . . . . . . 357
xii Contents
6.5.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
6.5.2 Blind Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.5.3 Multistage Source Separation . . . . . . . . . . . . . . . . . . . . . . . 359
6.6 Multiuser Detection in Wireless Communications . . . . . . . . . . . . 362
6.6.1 Model Assumptions and Problem Statement . . . . . . . . . . 363
6.6.2 Signature Waveform Matched Filtering Based
Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
6.6.3 Chip Waveform Matched Filtering Based Multiuser
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
6.6.4 Multiple Antennas Based Multiuser Detection . . . . . . . . . 375
6.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Appendix 6A Proof of Theorem 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Appendix 6B Proof of Fact 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Appendix 6C Proof of Property 6.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Appendix 6D Multichannel Levinson Recursion Algorithm . . . . . . . . . 383
Appendix 6E Integrated Bispectrum Based Time Delay Estimation . 385
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Computer Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
7 Two-Dimensional Blind Deconvolution Algorithms . . . . . . . . . 391
7.1 Two-Dimensional Discrete-Space Signals, Systems and
Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
7.1.1 2-D Deterministic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 391
7.1.2 2-D Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
7.1.3 2-D Linear Shift-Invariant Systems . . . . . . . . . . . . . . . . . . 395
7.1.4 2-D Stationary Random Processes . . . . . . . . . . . . . . . . . . . 400
7.2 2-D Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
7.2.1 Blind Deconvolution Problem . . . . . . . . . . . . . . . . . . . . . . . 402
7.2.2 Peak Distortion and Minimum Mean-Square-Error
Deconvolution Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7.3 SOS Based Blind Deconvolution Approach: Linear Prediction . 406
7.4 HOS Based Blind Deconvolution Approaches . . . . . . . . . . . . . . . . 409
7.4.1 2-D Maximum Normalized Cumulant Deconvolution
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
7.4.2 2-D Super-Exponential Deconvolution Algorithm . . . . . . 413
7.4.3 Improvements on 2-D MNC Deconvolution Algorithm . . 416
7.5 Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
7.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Computer Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Contents xiii
8 Applications of Two-Dimensional Blind Deconvolution
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
8.1 Nonparametric Blind System Identification and Texture
Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
8.1.1 Nonparametric 2-D BSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
8.1.2 Texture Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
8.2 Parametric Blind System Identification and Texture Image
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
8.2.1 Parametric 2-D BSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
8.2.2 Texture Image Classification . . . . . . . . . . . . . . . . . . . . . . . . 449
8.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Appendix 8A Proof of Property 8.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Appendix 8B Proof of Property 8.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
Appendix 8C Proof of Theorem 8.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Appendix 8D Proof of Fact 8.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Computer Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463