搜索附件  
头雁微网 附件中心 技术应用 情报信息 Advanced DC-DC Converters: Advanced DC-DC Converters.pdf
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

Advanced DC-DC Converters: Advanced DC-DC Converters.pdf

 

Advanced DC-DC Converters:

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.
Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.
The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.
Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.
Visit the CRC Press Web site at www.crcpress.com
© 2004 by CRC Press LLC
No claim to original U.S. Government works
International Standard Book Number 0-8493-1956-0
Library of Congress Card Number 2003051622
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper
Library of Congress Cataloging-in-Publication Data
Luo, Fang Lin.
Advanced DC/DC converters / Fang Lin Luo and Hong Ye.
p. cm. — (Power electronics and applications series)
Includes bibliographical references and index.
ISBN 0-8493-1956-0 (alk. paper)
1. DC-to-DC converters. I. Ye, Hong, 1973- II. Title. III. Series.
TK7887.6.L86 2003
621.31′32—dc21 2003051622
Preface
The purpose of this book is to provide up-to-date information on advanced
DC/DC converters that is both concise and useful for engineering students
and practicing professionals. It is well organized in 748 pages with 320
diagrams to introduce more than 100 topologies of the advanced DC/DC
converters originally developed by the authors. EMI/EMC reduction and
various DC voltage sources are also illustrated in this book. All prototypes
represent novel approaches and great contributions to modern power engineering.
Power engineering is the method used to supply electrical energy from a
source to its users. It is of vital importance to industry. It is likely that the
air we breathe and water we drink are taken for granted until they are not
there. Energy conversion technique is the main focus of power engineering.
The corresponding equipment can be divided into four groups:
• AC/AC transformers
• AC/DC rectifiers
• DC/DC converters
• DC/AC inverters
From recent reports, the production of DC/DC converters occupies the largest
percentage of the total turnover of all conversion equipment production.
DC/DC conversion technology is progressing rapidly. According to incomplete
statistics, there are more than 500 topologies of DC/DC converters existing,
with new topologies created every year. It is a lofty undertaking to treat the
large number of DC/DC converters. The authors have sorted these converters
into six generations since 2001. This systematical work is very helpful for DC/
DC converter’s evolution and development. The converters are listed below:
1. First generation (classical/traditional) converters
2. Second generation (multiple-quadrant) converters
3. Third generation (switched component) converters
4. Fourth generation (soft-switching) converters
5. Fifth generation (synchronous rectifier) converters
6. Sixth generation (multiple-element resonant power) converters
A review of the DC/DC conversion technique development reveals that the
idea was induced from other equipment. Transformers successfully convert an
AC source voltage to other AC output voltage(s) with very high efficiency.
Rectifier devices such as diode, transistor, and thysistor effectively rectify an
AC source voltage to DC output voltage. Nearly eight decades ago, people
sought to invent equipment to convert a DC source voltage to another DC
output voltage(s) with high efficiency. Unfortunately, no such simple apparatus
such as a transformer and/or rectifier was found for DC/DC conversion purpose.
High frequency switch-on and -off semiconductor devices paved the way
for chopper circuits. This invention inspired the idea for DC/DC conversion.
Therefore, the fundamental DC/DC converters were derived from the corresponding
choppers. At present, the fundamental converters — Buck converter,
Boost converter, and Buck-Boost converter — are still the basic circuits
for DC/DC conversion technique in research and development.
The voltage-lift technique is a popular method that is widely applied in
electronic circuit design. Applying this technique effectively overcomes the
effects of parasitic elements and greatly increases the output voltage. Therefore,
these DC/DC converters can convert the source voltage into a higher
output voltage with high power efficiency, high power density, and simple
structure. It is applied in the periodical switching circuit. Usually, a capacitor
is charged during switch-on by a certain voltage. This charged capacitor
voltage can be arranged on top-up to output voltage during switch-off.
Therefore, the output voltage can be lifted. A typical example is the sawtooth-
wave generator with voltage-lift circuit.
The voltage-lift technique has been successfully employed in the design
of DC/DC converters. However, its output voltage increases in arithmetic
progression, stage by stage. The super-lift technique is a great achievement
in DC/DC conversion technology. It is more powerful than the voltage-lift
technique; the output voltage transfer gain of super-lift converters can be
very high, which increases in geometric progression, stage by stage. It effectively
enhances the voltage transfer gain in power series. Four series of superlift
converters created by the authors are introduced in this book. Some
industrial applications verified their versatile and powerful characteristics.
Multiple-quadrant operation is often required in industrial applications.
Most publications in the literature concentrate on the single-quadrant operation.
This fact is reasonable since most novel approaches were derived from
its simple structure. To compensate for these losses, the authors have spent
much time and spirit to develop multiple-quadrant converters, positivenegative
converters in various generations.
This book is organized in 18 chapters. The DC/DC conversion technique
is introduced in Chapter 1 and the voltage list converters in Chapter 2.
Chapters 3 to 6 introduce the four series super-lift converters. Chapter 7
introduces the second generation converters; and Chapter 8, the third generation
converters. Chapters 9 and 10 introduce the two-series multiple-lift
push-pull switched-capacitor converters. Chapter 11 introduces the fourth
generation converters and Chapter 12 the fifth generation converters. Chapters
13 to 16 introduce the sixth generation converters. Chapter 17 introduces
various DC voltage sources; and Chapter 18 introduces the gating-signal
generator, EMI/EMC, and some applications.
The authors are pioneers in DC/DC conversion technology. They have
devoted many years to this research area and created a large number of
outstanding converters, including world-renowned series DC/DC converters,
namely, Luo-Converters, which cover all six generation converters.
Super-lift converters are our favorite achievement in our 20-years’ research
fruits. Our biographies and information are provided on the following page.
Our acknowledgment goes to the executive editor for this book.
Dr. Fang Lin Luo and Dr. Hong Ye
Nanyang Technological University
Singapore
Contents
1 Introduction
1.1 Historical Review
1.2 Multiple-Quadrant Choppers
1.2.1 Multiple-Quadrant Operation
1.2.2 The First-Quadrant Chopper
1.2.3 The Second-Quadrant Chopper
1.2.4 The Third-Quadrant Chopper
1.2.5 The Fourth-Quadrant Chopper
1.2.6 The First and Second Quadrant Chopper
1.2.7 The Third and Fourth Quadrant Chopper
1.2.8 The Four-Quadrant Chopper
1.3 Pump Circuits
1.3.1 Fundamental Pumps
1.3.1.1 Buck Pump
1.3.1.2 Boost Pump
1.3.1.3 Buck-Boost Pump
1.3.2 Developed Pumps
1.3.2.1 Positive Luo-Pump
1.3.2.2 Negative Luo-Pump
1.3.2.3 Cúk-Pump
1.3.3 Transformer-Type Pumps
1.3.3.1 Forward Pump
1.3.3.2 Fly-Back Pump
1.3.3.3 ZETA Pump
1.3.4 Super-Lift Pumps
1.3.4.1 Positive Super Luo-Pump
1.3.4.2 Negative Super Luo-Pump
1.3.4.3 Positive Push-Pull Pump
1.3.4.4 Negative Push-Pull Pump
1.3.4.5 Double/Enhanced Circuit (DEC)
1.4 Development of DC/DC Conversion Technique
1.4.1 The First Generation Converters
1.4.1.1 Fundamental Converters
1.4.1.2 Transformer-Type Converters
1.4.1.3 Developed Converters
1.4.1.4 Voltage Lift Converters
1.4.1.5 Super Lift Converters
1.4.2 The Second Generation Converters
1.4.3 The Third Generation Converters
1.4.3.1 Switched Capacitor Converters
1.4.3.2 Multiple-Quadrant Switched Capacitor
Luo-Converters
1.4.3.3 Multiple-Lift Push-Pull Switched Capacitor
Converters
1.4.3.4 Multiple-Quadrant Switched Inductor Converters
1.4.4 The Fourth Generation Converters
1.4.4.1 Zero-Current-Switching Quasi-Resonant
Converters
1.4.4.2 Zero-Voltage-Switching Quasi-Resonant
Converters
1.4.4.3 Zero-Transition Converters
1.4.5 The Fifth Generation Converters
1.4.6 The Sixth Generation Converters
1.5 Categorize Prototypes and DC/DC Converter Family Tree
References
2 Voltage-Lift Converters
2.1 Introduction
2.2 Seven Self-Lift Converters
2.2.1 Self-Lift Cúk Converter
2.2.1.1 Continuous Conduction Mode
2.2.1.2 Discontinuous Conduction Mode
2.2.2 Self-Lift P/O Luo-Converter
2.2.2.1 Continuous Conduction Mode
2.2.2.2 Discontinuous Conduction Mode
2.2.3 Reverse Self-Lift P/O Luo-Converter
2.2.3.1 Continuous Conduction Mode.
2.2.3.2 Discontinuous Conduction Mode
2.2.4 Self-Lift N/O Luo-Converter
2.2.4.1 Continuous Conduction Mode
2.2.4.2 Discontinuous Conduction Mode
2.2.5 Reverse Self-Lift N/O Luo-Converter
2.2.5.1 Continuous Conduction Mode
2.2.5.2 Discontinuous Conduction Mode
2.2.6 Self-Lift SEPIC
2.2.6.1 Continuous Conduction Mode
2.2.6.2 Discontinuous Conduction Mode
2.2.7 Enhanced Self-Lift P/O Luo-Converter
2.3 Positive Output Luo-Converters
2.3.1 Elementary Circuit
2.3.1.1 Circuit Description
2.3.1.2 Variations of Currents and Voltages
2.3.1.3 Instantaneous Values of Currents and Voltages
2.3.1.4 Discontinuous Mode
2.3.1.5 Stability Analysis
2.3.2 Self-Lift Circuit
2.3.2.1 Circuit Description
2.3.2.2 Average Current IC1 and Source Current IS
2.3.2.3 Variations of Currents and Voltages
2.3.2.4 Instantaneous Value of the Currents and
Voltages
2.3.2.5 Discontinuous Mode
2.3.2.6 Stability Analysis
2.3.3 Re-Lift Circuit
2.3.3.1 Circuit Description
2.3.3.2 Other Average Currents
2.3.3.3 Variations of Currents and Voltages
2.3.3.4 Instantaneous Value of the Currents and
Voltages
2.3.3.5 Discontinuous Mode
2.3.3.6 Stability Analysis
2.3.4 Multiple-Lift Circuits
2.3.4.1 Triple-Lift Circuit
2.3.4.2 Quadruple-Lift Circuit
2.3.5 Summary
2.3.6 Discussion
2.3.6.1 Discontinuous-Conduction Mode
2.3.6.2 Output Voltage VO versus Conduction Duty k
2.3.6.3 Switch Frequency f
2.4 Negative Output Luo-Converters
2.4.1 Elementary Circuit
2.4.1.1 Circuit Description
2.4.1.2 Average Voltages and Currents
2.4.1.3 Variations of Currents and Voltages
2.4.1.4 Instantaneous Values of Currents and
Voltages
2.4.1.5 Discontinuous Mode
2.4.2 Self-Lift Circuit
2.4.2.1 Circuit Description
2.4.2.2 Average Voltages and Currents
2.4.2.3 Variations of Currents and Voltages
2.4.2.4 Instantaneous Value of the Currents and
Voltages
2.4.2.5 Discontinuous Mode
2.4.3 Re-Lift Circuit
2.4.3.1 Circuit Description
2.4.3.2 Average Voltages and Currents
2.4.3.3 Variations of Currents and Voltages
2.4.3.4 Instantaneous Value of the Currents and
Voltages
2.4.3.5 Discontinuous Mode
2.4.4 Multiple-Lift Circuits
2.4.4.1 Triple-Lift Circuit
2.4.4.2 Quadruple-Lift Circuit
2.4.5 Summary
2.5 Modified Positive Output Luo-Converters
2.5.1 Elementary Circuit
2.5.2 Self-Lift Circuit
2.5.3 Re-Lift Circuit
2.5.4 Multi-Lift Circuit
2.5.5 Application
2.6 Double Output Luo-Converters
2.6.1 Elementary Circuit
2.6.1.1 Positive Conversion Path
2.6.1.2 Negative Conversion Path
2.6.1.3 Discontinuous Mode
2.6.2 Self-Lift Circuit
2.6.2.1 Positive Conversion Path
2.6.2.2 Negative Conversion Path
2.6.2.3 Discontinuous Conduction Mode
2.6.3 Re-Lift Circuit
2.6.3.1 Positive Conversion Path
2.6.3.2 Negative Conversion Path
2.6.3.3 Discontinuous Conduction Mode
2.6.4 Multiple-Lift Circuit
2.6.4.1 Triple-Lift Circuit
2.6.4.2 Quadruple-Lift Circuit
2.6.5 Summary
2.6.5.1 Positive Conversion Path
2.6.5.2 Negative Conversion Path
2.6.5.3 Common Parameters
Bibliography
3 Positive Output Super-Lift Luo-Converters
3.1 Introduction
3.2 Main Series
3.2.1 Elementary Circuit
3.2.2 Re-Lift Circuit
3.2.3 Triple-Lift Circuit
3.2.4 Higher Order Lift Circuit
3.3 Additional Series
3.3.1 Elementary Additional Circuit
3.3.2 Re-Lift Additional Circuit
3.3.3 Triple-Lift Additional Circuit
3.3.4 Higher Order Lift Additional Circuit
3.4 Enhanced Series
3.4.1 Elementary Enhanced Circuit
3.4.2 Re-Lift Enhanced Circuit
3.4.3 Triple-Lift Enhanced Circuit
3.4.4 Higher Order Lift Enhanced Circuit
3.5 Re-Enhanced Series
3.5.1 Elementary Re-Enhanced Circuit
3.5.2 Re-Lift Re-Enhanced Circuit
3.5.3 Triple-Lift Re-Enhanced Circuit
3.5.4 Higher Order Lift Re-Enhanced Circuit
3.6 Multiple-Enhanced Series
3.6.1 Elementary Multiple-Enhanced Circuit
3.6.2 Re-Lift Multiple-Enhanced Circuit
3.6.3 Triple-Lift Multiple-Enhanced Circuit
3.6.4 Higher Order Lift Multiple-Enhanced Circuit
3.7 Summary of Positive Output Super-Lift Luo-Converters
3.8 Simulation Results
3.8.1 Simulation Results of a Triple-Lift Circuit
3.8.2 Simulation Results of a Triple-Lift Additional Circuit
3.9 Experimental Results
3.9.1 Experimental Results of a Triple-Lift Circuit
3.9.2 Experimental Results of a Triple-Lift Additional Circuit
3.9.3 Efficiency Comparison of Simulation and Experimental
Results
Bibliography
4 Negative Output Super-Lift Luo-Converters
4.1 Introduction
4.2 Main Series
4.2.1 Elementary Circuit
4.2.2 N/O Re-Lift Circuit
4.2.3 N/O Triple-Lift Circuit
4.2.4 N/O Higher Order Lift Circuit
4.3 Additional Series
4.3.1 N/O Elementary Additional Circuit
4.3.2 N/O Re-Lift Additional Circuit
4.3.3 N/O Triple-Lift Additional Circuit
4.3.4 N/O Higher Order Lift Additional Circuit
4.4 Enhanced Series
4.4.1 N/O Elementary Enhanced Circuit
4.4.2 N/O Re-Lift Enhanced Circuit
4.4.3 N/O Triple-Lift Enhanced Circuit
4.4.4 N/O Higher Order Lift Enhanced Circuit
4.5 Re-Enhanced Series
4.5.1 N/O Elementary Re-Enhanced Circuit
4.5.2 N/O Re-Lift Re-Enhanced Circuit
4.5.3 N/O Triple-Lift Re-Enhanced Circuit
4.5.4 N/O Higher Order Lift Re-Enhanced Circuit
4.6 Multiple-Enhanced Series
4.6.1 N/O Elementary Multiple-Enhanced Circuit
4.6.2 N/O Re-Lift Multiple-Enhanced Circuit
4.6.3 N/O Triple-Lift Multiple-Enhanced Circuit
4.6.4 N/O Higher Order Lift Multiple-Enhanced Circuit
4.7 Summary of Negative Output Super-Lift
Luo-Converters
4.8 Simulation Results
4.8.1 Simulation Results of a N/O Triple-Lift Circuit
4.8.2 Simulation Results of a N/O Triple-Lift Additional
Circuit
4.9 Experimental Results
4.9.1 Experimental Results of a N/O Triple-Lift Circuit
4.9.2 Experimental Results of a N/O Triple-Lift Additional
Circuit
4.9.3 Efficiency Comparison of Simulation and Experimental
Results
4.9.4 Transient Process and Stability Analysis
Bibliography
5 Positive Output Cascade Boost Converters
5.1 Introduction
5.2 Main Series
5.2.1 Elementary Boost Circuit
5.2.2 Two-Stage Boost Circuit
5.2.3 Three-Stage Boost Circuit
5.2.4 Higher Stage Boost Circuit
5.3 Additional Series
5.3.1 Elementary Boost Additional (Double) Circuit
5.3.2 Two-Stage Boost Additional Circuit
5.3.3 Three-Stage Boost Additional Circuit
5.3.4 Higher Stage Boost Additional Circuit
5.4 Double Series
5.4.1 Elementary Double Boost Circuit
5.4.2 Two-Stage Double Boost Circuit
5.4.3 Three-Stage Double Boost Circuit
5.4.4 Higher Stage Double Boost Circuit
5.5 Triple Series
5.5.1 Elementary Triple Boost Circuit
5.5.2 Two-Stage Triple Boost Circuit
5.5.3 Three-Stage Triple Boost Circuit
5.5.4 Higher Stage Triple Boost Circuit
5.6 Multiple Series
5.6.1 Elementary Multiple Boost Circuit
5.6.2 Two-Stage Multiple Boost Circuit
5.6.3 Three-Stage Multiple Boost Circuit
5.6.4 Higher Stage Multiple Boost Circuit
5.7 Summary of Positive Output Cascade Boost Converters
5.8 Simulation and Experimental Results
5.8.1 Simulation Results of a Three-Stage Boost Circuit
5.8.2 Experimental Results of a Three-Stage Boost Circuit
5.8.3 Efficiency Comparison of Simulation and Experimental
Results
5.8.4 Transient Process
Bibliography
6 Negative Output Cascade Boost Converters
6.1 Introduction
6.2 Main Series
6.2.1 N/O Elementary Boost Circuit
6.2.2 N/O Two-Stage Boost Circuit
6.2.3 N/O Three-Stage Boost Circuit
6.2.4 N/O Higher Stage Boost Circuit
6.3 Additional Series
6.3.1 N/O Elementary Additional Boost Circuit
6.3.2 N/O Two-Stage Additional Boost Circuit
6.3.3 N/O Three-Stage Additional Boost Circuit
6.3.4 N/O Higher Stage Additional Boost Circuit
6.4 Double Series
6.4.1 N/O Elementary Double Boost Circuit
6.4.2 N/O Two-Stage Double Boost Circuit
6.4.3 N/O Three-Stage Double Boost Circuit
6.4.4 N/O Higher Stage Double Boost Circuit
6.5 Triple Series
6.5.1 N/O Elementary Triple Boost Circuit
6.5.2 N/O Two-Stage Triple Boost Circuit
6.5.3 N/O Three-Stage Triple Boost Circuit
6.5.4 N/O Higher Stage Triple Boost Circuit
6.6 Multiple Series
6.6.1 N/O Elementary Multiple Boost Circuit
6.6.2 N/O Two-Stage Multiple Boost Circuit
6.6.3 N/O Three-Stage Multiple Boost Circuit
6.6.4 N/O Higher Stage Multiple Boost Circuit
6.7 Summary of Negative Output Cascade Boost Converters
6.8 Simulation and Experimental Results
6.8.1 Simulation Results of a Three-Stage Boost Circuit
6.8.2 Experimental Results of a Three-Stage Boost Circuit
6.8.3 Efficiency Comparison of Simulation and Experimental
Results
6.8.4 Transient Process
Bibliography
7 Multiple Quadrant Operating Luo-Converters
7.1 Introduction
7.2 Circuit Explanation
7.2.1 Mode A
7.2.2 Mode B
7.2.3 Mode C
7.2.4 Mode D
7.2.5 Summary
7.3 Mode A (Quadrant I Operation)
7.3.1 Circuit Description
7.3.2 Variations of Currents and Voltages
7.3.3 Discontinuous Region
7.4 Mode B (Quadrant II Operation)
7.4.1 Circuit Description
7.4.2 Variations of Currents and Voltages
7.4.3 Discontinuous Region
7.5 Mode C (Quadrant III Operation)
7.5.1 Circuit Description
7.5.2 Variations of Currents and Voltages
7.5.3 Discontinuous Region
7.6 Mode D (Quadrant IV Operation)
7.6.1 Circuit Description
7.6.2 Variations of Currents and Voltages
7.6.3 Discontinuous Region
7.7 Simulation Results
7.8 Experimental Results
7.9 Discussion
7.9.1 Discontinuous-Conduction Mode
7.9.2 Comparison with the Double-Output Luo-
Converter
7.9.3 Conduction Duty k
7.9.4 Switching Frequency f
Bibliography
8 Switched Component Converters
8.1 Introduction
8.2 A Two-Quadrant SC DC/DC Converter
8.2.1 Circuit Description
8.2.1.1 Mode A
8.2.1.2 Mode B
8.2.2 Mode A (Quadrant I Operation)
8.2.3 Mode B (Quadrant II Operation)
8.2.4 Experimental Results
8.2.5 Discussion
8.2.5.1 Efficiency
8.2.5.2 Conduction Duty k
8.2.5.3 Switching Frequency f
8.3 Four-Quadrant Switched Capacitor DC/DC
Luo-Converter
8.3.1 Mode A (QI: Forward Motoring)
8.3.1.1 Mode A1: Condition V1 > V2
8.3.1.2 Mode A2: Condition V1 < V2
8.3.1.3 Experimental Results
8.3.2 Mode B (QII: Forward Regenerative Braking)
8.3.2.1 Mode B1: Condition V1 > V2
8.3.2.2 Mode B2: Condition V1 < V2
8.3.3 Mode C (QIII: Reverse Motoring)
8.3.4 Mode D (QIV: Reverse Regenerative Braking)
8.4 Switched Inductor Four-Quadrant DC/DC Luo-Converter
8.4.1 Mode A (QI: Forward Motoring)
8.4.1.1 Continuous Mode
8.4.1.2 Discontinuous Mode
8.4.2 Mode B (QII: Forward Regenerative Braking)
8.4.2.1 Continuous Mode
8.4.2.2 Discontinuous Mode
8.4.3 Mode C (QIII: Reverse Motoring)
8.4.3.1 Continuous Mode
8.4.3.2 Discontinuous Mode
8.4.4 Mode D (QIV: Reverse Regenerative Braking)
8.4.4.1 Continuous Mode
8.4.4.2 Discontinuous Mode
8.4.5 Experimental Results
Bibliography
9 Positive Output Multiple-Lift Push-Pull Switched-Capacitor
Luo-Converters
9.1 Introduction
9.2 Main Series
9.2.1 Elementary Circuit
9.2.2 Re-Lift Circuit
9.2.3 Triple-Lift Circuit
9.2.4 Higher Order Lift Circuit
9.3 Additional Series
9.3.1 Elementary Additional Circuit
9.3.2 Re-Lift Additional Circuit
9.3.3 Triple-Lift Additional Circuit
9.3.4 Higher Order Lift Additional Circuit
9.4 Enhanced Series
9.4.1 Elementary Enhanced Circuit
9.4.2 Re-Lift Enhanced Circuit
9.4.3 Triple-Lift Enhanced Circuit
9.4.4 Higher Order Enhanced Lift Circuit
9.5 Re-Enhanced Series
9.5.1 Elementary Re-Enhanced Circuit
9.5.2 Re-Lift Re-Enhanced Circuit
9.5.3 Triple-Lift Re-Enhanced Circuit
9.5.4 Higher Order Lift Re-Enhanced Circuit
9.6 Multiple-Enhanced Series
9.6.1 Elementary Multiple-Enhanced Circuit
9.6.2 Re-Lift Multiple-Enhanced Circuit
9.6.3 Triple-Lift Multiple-Enhanced Circuit
9.6.4 Higher Order Lift Multiple-Enhanced Circuit
9.7 Theoretical Analysis
9.8 Summary of This Technique
9.9 Simulation Results
9.9.1 A Triple-Lift Circuit
9.9.2 A Triple-Lift Additional Circuit
9.10 Experimental Results
9.10.1 A Triple-Lift Circuit
9.10.2 A Triple-Lift Additional Circuit
Bibliography
10 Negative Output Multiple-Lift Push-Pull
Switched-Capacitor Luo-Converters
10.1 Introduction
10.2 Main Series
10.2.1 N/O Elementary Circuit
10.2.2 N/O Re-Lift Circuit
10.2.3 N/O Triple-Lift Circuit
10.2.4 N/O Higher Order Lift Circuit
10.3 Additional Series
10.3.1 N/O Elementary Additional Circuit
10.3.2 N/O Re-Lift Additional Circuit
10.3.3 N/O Triple-Lift Additional Circuit
10.3.4 N/O Higher Order Lift Additional Circuit
10.4 Enhanced Series
10.4.1 N/O Elementary Enhanced Circuit
10.4.2 N/O Re-Lift Enhanced Circuit
10.4.3 N/O Triple-Lift Enhanced Circuit
10.4.4 N/O Higher Order Lift Enhanced Circuit
10.5 Re-Enhanced Series
10.5.1 N/O Elementary Re-Enhanced Circuit
10.5.2 N/O Re-Lift Re-Enhanced Circuit
10.5.3 N/O Triple-Lift Re-Enhanced Circuit
10.5.4 N/O Higher Order Lift Re-Enhanced Circuit
10.6 Multiple-Enhanced Series
10.6.1 N/O Elementary Multiple-Enhanced Circuit
10.6.2 N/O Re-Lift Multiple-Enhanced Circuit
10.6.3 N/O Triple-Lift Multiple-Enhanced Circuit
10.6.4 N/O Higher Order Lift Multiple-Enhanced Circuit
10.7 Summary of This Technique
10.8 Simulation and Experimental Results
10.8.1 Simulation Results
10.8.2 Experimental Results
Bibliography
11 Multiple-Quadrant Soft-Switch Converters
11.1 Introduction
11.2 Multiple-Quadrant DC/DC ZCS Quasi-Resonant
Luo-Converters
11.2.1 Mode A
11.2.1.1 Interval t = 0 to t1
11.2.1.2 Interval t = t1 to t2
11.2.1.3 Interval t = t2 to t3
11.2.1.4 Interval t = t3 to t4
11.2.2 Mode B
11.2.2.1 Interval t = 0 to t1
11.2.2.2 Interval t = t1 to t2
11.2.2.3 Interval t = t2 to t3
11.2.2.4 Interval t = t3 to t4
11.2.3 Mode C
11.2.3.1 Interval t = 0 to t1
11.2.3.2 Interval t = t1 to t2
11.2.3.3 Interval t = t2 to t3
11.2.3.4 Interval t = t3 to t4
11.2.4 Mode D
11.2.4.1 Interval t = 0 to t1
11.2.4.2 Interval t = t1 to t2
11.2.4.3 Interval t = t2 to t3
11.2.4.4 Interval t = t3 to t4
11.2.5 Experimental Results
11.3 Multiple-Quadrant DC/DC ZVS Quasi Resonant
Luo-Converter
11.3.1 Mode A
11.3.1.1 Interval t = 0 to t1
11.3.1.2 Interval t = t1 to t2
11.3.1.3 Interval t = t2 to t3
11.3.1.4 Interval t = t3 to t4
11.3.2 Mode B
11.3.2.1 Interval t = 0 to t1
11.3.2.2 Interval t = t1 to t2
11.3.2.3 Interval t = t2 to t3
11.3.2.4 Interval t = t3 to t4
11.3.3 Mode C
11.3.3.1 Interval t = 0 to t1
11.3.3.2 Interval t = t1 to t2
11.3.3.3 Interval t = t2 to t3
11.3.3.4 Interval t = t3 to t4
11.3.4 Mode D
11.3.4.1 Interval t = 0 to t1
11.3.4.2 Interval t = t1 to t2
11.3.4.3 Interval t = t2 to t3
11.3.4.4 Interval t = t3 to t4
11.3.5 Experimental Results
11.4 Multiple-Quadrant Zero-Transition DC/DC
Luo-Converters
11.4.1 Mode A (Quadrant I Operation)
11.4.2 Mode B (Quadrant II Operation)
11.4.3 Mode C (Quadrant III Operation)
11.4.4 Mode D (Quadrant IV Operation)
11.4.5 Simulation Results
11.4.6 Experimental Results
11.4.7 Design Considerations
Bibliography
12 Synchronous Rectifier DC/DC Converters
12.1 Introduction
12.2 Flat Transformer Synchronous Rectifier Luo-Converter
12.2.1 Transformer Is in Magnetizing Process
12.2.2 Switching-On
12.2.3 Transformer Is in Demagnetizing Process
12.2.4 Switching-Off
12.2.5 Summary
12.3 Active Clamped Synchronous Rectifier Luo-Converter
12.3.1 Transformer Is in Magnetizing
12.3.2 Switching-On
12.3.3 Transformer Is in Demagnetizing
12.3.4 Switching-Off
12.3.5 Summary
12.4 Double Current Synchronous Rectifier Luo-Converter
12.4.1 Transformer Is in Magnetizing
12.4.2 Switching-On
12.4.3 Transformer Is in Demagnetizing
12.4.4 Switching-Off
12.4.5 Summary
12.5 Zero-Current-Switching Synchronous Rectifier
Luo-Converter
12.5.1 Transformer Is in Magnetizing
12.5.2 Resonant Period
12.5.3 Transformer Is in Demagnetizing
12.5.4 Switching-Off
12.5.5 Summary
12.6 Zero-Voltage-Switching Synchronous Rectifier
Luo-Converter
12.6.1 Transformer Is in Magnetizing
12.6.2 Resonant Period
12.6.3 Transformer Is in Demagnetizing
12.6.4 Switching-Off
12.6.5 Summary
Bibliography
13 Multiple Energy-Storage Element Resonant Power
Converters
13.1 Introduction
13.1.1 Two-Element RPC
13.1.2 Three-Element RPC
13.1.3 Four-Element RPC
13.2 Bipolar Current and Voltage Source
13.2.1 Bipolar Voltage Source
13.2.1.1 Two Voltage Source Circuit
13.2.1.2 One Voltage Source Circuit
13.2.2 Bipolar Current Source
13.2.2.1 Two Voltage Source Circuit
13.2.2.2 One Voltage Source Circuit
13.3 A Two-Element RPC Analysis
13.3.1 Input Impedance
13.3.2 Current Transfer Gain
13.3.3 Operation Analysis
13.3.4 Simulation Results
13.3.5 Experimental Results
Bibliography
14 Π-CLL Current Source Resonant Inverter
14.1 Introduction
14.1.1 Pump Circuits
14.1.2 Current Source
14.1.3 Resonant Circuit
14.1.4 Load
14.1.5 Summary
14.2 Mathematic Analysis
14.2.1 Input Impedance
14.2.2 Components’ Voltages and Currents
14.2.3 Simplified Impedance and Current Gain
14.2.4 Power Transfer Efficiency
14.3 Simulation Results
14.4 Discussion
14.4.1 Function of the Π-CLL Circuit
14.4.2 Applying Frequency to this Π-CLL CSRI
14.4.3 Explanation of g > 1
14.4.4 DC Current Component Remaining
14.4.5 Efficiency
Bibliography
15 Cascade Double Γ-CL Current Source Resonant Inverter
15.1 Introduction
15.2 Mathematic Analysis
15.2.1 Input Impedance
15.2.2 Components, Voltages, and Currents
15.2.3 Simplified Impedance and Current Gain
15.2.4 Power Transfer Efficiency
15.3 Simulation Result
15.3.1 β = 1, f = 33.9 kHz, T = 29.5 μs
15.3.2 β = 1.4142, f = 48.0 kHz, T = 20.83 μs
15.3.3 β = 1.59, f = 54 kHz, T = 18.52 μs
15.4 Experimental Result
15.5 Discussion
15.5.1 Function of the Double Γ-CL Circuit
15.5.2 Applying Frequency to this Double Γ-CL CSRI
15.5.3 Explanation of g > 1
Bibliography
16 Cascade Reverse Double Γ-LC Resonant Power Converter
16.1 Introduction
16.2 Steady-State Analysis of Cascade Reverse Double
Γ-LC RPC
16.2.1 Topology and Circuit Description
16.2.2 Classical Analysis on AC Side
16.2.2.1 Basic Operating Principles
16.2.2.2 Equivalent Load Resistance
16.2.2.3 Equivalent AC Circuit and Transfer Functions
16.2.2.4 Analysis of Voltage Transfer Gain and the
Input Impedance
16.2.3 Simulation and Experimental Results
16.2.3.1 Simulation Studies
16.2.3.2 Experimental Results
16.3 Resonance Operation and Modeling
16.3.1 Operating Principle, Operating Modes and Equivalent
Circuits
16.3.2 State-Space Analysis
16.4 Small-Signal Modeling of Cascade Reverse Double Γ-LC RPC
16.4.1 Small-Signal Modeling
16.4.1.1 Model Diagram
16.4.1.2 Nonlinear State Equation
16.4.1.3 Harmonic Approximation
16.4.1.4 Extended Describing Function
16.4.1.5 Harmonic Balance
16.4.1.6 Perturbation and Linearization
16.4.1.7 Equivalent Circuit Model
16.4.2 Closed-Loop System Design
16.5 Discussion
16.5.1 Characteristics of Variable-Parameter Resonant
Converter
16.5.2 Discontinuous Conduction Mode (DCM)
Bibliography
Appendix: Parameters Used in Small-Signal Modeling
17 DC Energy Sources for DC/DC Converters
17.1 Introduction
17.2 Single-Phase Half-Wave Diode Rectifier
17.2.1 Resistive Load
17.2.2 Inductive Load
17.2.3 Pure Inductive Load
17.2.4 Back EMF Plus Resistor Load
17.2.5 Back EMF Plus Inductor Load
17.3 Single-Phase Bridge Diode Rectifier
17.3.1 Resistive Load
17.3.2 Back EMF Load
17.3.3 Capacitive Load
17.4 Three-Phase Half-Bridge Diode Rectifier
17.4.1 Resistive Load
17.4.2 Back EMF Load (0.5 2Vin < E < 2Vin)
17.4.3 Back EMF Load (E < 0.5 2Vin)
17.5 Three-Phase Full-Bridge Diode Rectifier
with Resistive Load
17.6 Thyristor Rectifiers
17.6.1 Single-Phase Half-Wave Rectifier with Resistive Load
17.6.2 Single-Phase Half-Wave Thyristor Rectifier with
Inductive Load
17.6.3 Single-Phase Half-Wave Thyristor Rectifier with Pure
Inductive Load
17.6.4 Single-Phase Half-Wave Rectifier with Back EMF
Plus Resistive Load
17.6.5 Single-Phase Half-Wave Rectifier with Back EMF
Plus Inductive Load
17.6.6 Single-Phase Half-Wave Rectifier with Back EMF Plus
Pure Inductor
17.6.7 Single-Phase Full-Wave Semicontrolled Rectifier
with Inductive Load
17.6.8 Single-Phase Full-Controlled Rectifier with Inductive
Load
17.6.9 Three-Phase Half-Wave Rectifier with Resistive Load
17.6.10 Three-Phase Half-Wave Thyristor Rectifier with Inductive
Load
17.6.11 Three-Phase Full-Wave Thyristor Rectifier with Resistive
Load.
17.6.12 Three-Phase Full-Wave Thyristor Rectifier with Inductive
Load
Bibliography
18 Control Circuit: EMI and Application Examples
of DC/DC Converters
18.1 Introduction
18.2 Luo-Resonator
18.2.1 Circuit Explanation
18.2.2 Calculation Formulae
18.2.3 A Design Example
18.2.4 Discussion
18.3 EMI, EMS and EMC
18.3.1 EMI/EMC Analysis
18.3.2 Comparison to Hard-Switching and Soft-Switching
18.3.3 Measuring Method and Results
18.3.4 Designing Rule to Minimize EMI/EMC
18.4 Some DC/DC Converter Applications
18.4.1 A 5000 V Insulation Test Bench
18.4.2 MIT 42/14 V 3 KW DC/DC Converter
18.4.3 IBM 1.8 V/200 A Power Supply
Bibliography
支持版主。{:7_1236:}
{:7_1239:}{:7_1241:}
好东西呀,这个可是很有用的
感谢楼主分享
版主的书真是相当丰富
经典DC-DC书,谢谢
很强大的电源方面教材啊
感謝分享
very good and thank you
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部