Modern Radar Systems 2nd Edition[原版非扫描]:Contents
Foreward xvii
Preface to the second edition xix
Preface to the first edition xxi
Chapter 1 The radar and its ground environment 1
1.1 Primary and secondary radar 1
1.1.1 Other types of radar 3
1.2 Coordinate systems and range 5
1.3 Main monostatic radar components 7
1.3.1 Transmitter 8
1.3.2 Waveguide or transmission line system 8
1.3.3 Diplexer 8
1.3.4 Antenna 8
1.3.5 Factors external to the radar 8
1.3.6 Receiver 8
1.3.7 Matched and matching filters 9
1.3.8 Detector 9
1.3.9 Analogue-to-digital converter 9
1.3.10 Signal processor 9
1.3.11 Threshold 9
1.3.12 Determination of position 9
1.3.13 Common components and timing 9
1.4 Basic quantities, maximum range 12
1.5 Secondary radar 17
1.6 Radars with separately located transmitters and receivers 17
1.6.1 Elliptical coordinates 18
1.6.2 Bistatic radar maximum range 19
1.7 Performance 21
1.7.1 Effects on range 22
1.7.2 Resolution 23
1.7.3 Accuracy 23
1.7.4 Stability 24
References 24
Chapter 2 Usual and unusual concepts 25
2.1 An example of three-dimensional representation: the Wien bridge oscillator 25
2.2 Vector representation 27
2.3 Order of linear processing 28
2.4 Polyphase modulation and demodulation 28
2.5 Symmetrical components in polyphase circuits 33
2.6 Harmonics in balanced polyphase circuits 36
2.7 Polyphase, or bottle-brush, noise 37
2.8 Time and spectral domains, helical spectra 41
2.8.1 Convolution and correlation 45
2.9 Gaussian pulses, spectra, and beam shapes 47
2.9.1 Gaussian pulses and spectra 47
2.9.2 Gaussian beam shapes 49
2.9.3 Gaussian illumination functions 49
2.10 Use of brackets and other symbols 50
References 50
Chapter 3 Transmitters 51
3.1 Transmitter power 51
3.2 Power output stage 51
3.2.1 Semiconductor transmitters 52
3.3 Spectrum and sidebands 53
3.3.1 Trapezoidal edges 54
3.3.2 Cosine and cosine squared edges 56
3.3.3 Extra modulator power needed for shaping 57
3.4 Pulse compression 58
3.4.1 Linear frequency modulation 59
3.4.2 Simple phase modulation 62
3.4.3 Other types of modulation and their spectra 65
3.5 Harmonics from the transmitter 72
3.6 Figures affecting radar performance 72
3.6.1 Range 72
3.6.2 Resolution 73
3.6.3 Accuracy 73
3.6.4 Stability 73
3.6.5 Interference to neighboring systems 79
References 79
Chapter 4 Microwave waveguide and transmission line system 81
4.1 Mismatch 84
4.2 Components 86
4.2.1 Coaxial cables 86
4.2.2 Waveguides 86
4.2.3 Striplines or microstrip lines 89
4.2.4 Microwave passive components 90
4.3 Monitoring 95
4.3.1 Power level 95
4.3.2 Voltage standing wave ratio (VSWR) 95
4.4 Effect on radar performance 95
4.4.1 Effects on maximum range 95
4.4.2 Effects on stability 96
References 96
Chapter 5 Antennas 97
5.1 Linear and rectangular radiators 98
5.1.1 Tapering the illumination function to reduce sidelobes 107
5.1.2 Uniform, trapezoidal, and triangular illumination tapering 109
5.1.3 Simply tapered illumination functions 109
5.1.4 Low-sidelobe tapering functions 110
5.1.5 General rules for tapering 115
5.2 Radiation from circular apertures 115
5.2.1 Simply shaped circular tapering functions 118
5.2.2 Circular Taylor low-sidelobe tapering function 118
5.3 Monopulse radar antennas 119
5.3.1 Tapering functions for monopulse antennas with low sidelobes 121
5.4 Arrays of discrete radiators 129
5.4.1 Tapered illumination functions 131
5.4.2 Ways of driving discrete elements 131
5.4.3 Grating effects 133
5.4.4 Beam-steering quantization effects 134
5.5 Creating shaped beams 138
5.5.1 Inverse Fourier transform method 139
5.5.2 The Woodward-Lawson method 140
5.6 Circular polarization 147
5.6.1 Circular polarizer for horn feeds 147
5.6.2 Reflecting polarizers 148
5.6.3 Transmission polarizers 148
5.6.4 Phased array polarization 149
5.6.5 Engineers’ and physicists’ conventions 151
5.6.6 Ellipticity or the quality of circular polarization 151
5.6.7 Rain echo suppression 152
5.7 Antenna hardware losses 152
5.7.1 Illumination function loss 153
5.7.2 Blocking loss 153
5.7.3 Spillover loss 153
5.7.4 Surface tolerance loss 155
5.7.5 Losses in power dividers, phase shifters, and other beam-forming network components 155
5.7.6 Other effects giving losses 156
5.8 Beam shape loss 156
5.8.1 Coherent integration 156
5.8.2 Noncoherent integration 158
5.8.3 Small numbers of pulses 159
5.9 Scanning loss 160
5.10 The equivalence of different signal combining systems 162
5.11 Noise received from an antenna 164
5.12 Sidelobe cancelers and adaptive beam forming 168
5.13 Antennas mounted on aircraft 169
5.13.1 Synthetic apertures 170
5.13.2 Mapping 176
5.13.3 Radars on satellites 176
5.13.4 Other considerations 177
5.14 Figures affecting radar performance 177
5.14.1 Range 177
5.14.2 Resolution 178
5.14.3 Accuracy 178
5.14.4 Stability 179
References 179
Appendix 5A Mathematical appendix 180
5A.1 Taylor distribution 180
5A.2 Zolotarëv distribution 180
5A.3 Bayliss distribution 182
Chapter 6 Factors outside the radar: propagation, scattering, and clutter 185
6.1 Amplitude and phase of the echo 185
6.1.1 Amplitude of the echo 185
6.1.2 Phases of the echoes and Doppler frequency 186
6.2 Effects of the atmosphere 187
6.2.1 Exponential atmosphere models 188
6.2.2 Constant k atmosphere model 190
6.2.3 Range-height paper 192
6.2.4 Lens loss 192
6.2.5 Anomalous propagation and superrefraction 194
6.2.6 Attenuation in the atmosphere 195
6.3 Scattering 200
6.3.1 Scattering without fading 201
6.3.2 Scattering with fluctuation 205
6.4 Second-time-around effect 217
6.5 Ground reflections and multiple paths 217
6.5.1 Flat or nearly flat earth 217
6.5.2 Factors that reduce reflections and lobing 227
6.6 Scenario to simulate a “typical” radar environment 231
6.6.1 Echoes of interest, the reference echo 232
6.6.2 A land clutter model 235
6.6.3 The Weibull clutter model 241
6.6.4 Land clutter spectrum 242
6.6.5 Sea clutter 244
6.6.6 Volume clutter, rain or snow clutter, and chaff or window 246
6.6.7 Rain and chaff spectra 248
6.6.8 Total signal at the input of the receiver 250
6.7 Figures affecting performance 250
6.7.1 Range 250
6.7.2 Accuracy 251
6.7.3 Stability 251
References 251
Appendix 6A Range-height paper 253
Chapter 7 Receivers 273
7.1 Dynamic range, control of gain, and sensitivity time control 274
7.2 Radio frequency section 277
7.2.1 Radio frequency amplifier 277
7.2.2 Radio frequency filter 279
7.2.3 Mixer 280
7.3 Intermediate frequency amplifier and filter 281
7.4 Limiters 282
7.4.1 Effects on amplitude 283
7.4.2 Effects on spectrum 283
7.5 Receiver characteristics 285
7.5.1 Minimum range 285
7.5.2 Gain 285
7.5.3 Bandwidth, filtering, ringing, and the ability to reject interference 285
7.5.4 Dynamic range before and after sensitivity time control (STC) 286
7.5.5 Ability to withstand transmitter pulse spikes 286
7.5.6 Constant signal or noise output 286
7.6 Figures affecting radar performance 286
7.6.1 Range budget 286
7.6.2 Resolution 287
7.6.3 Accuracy budget 287
7.6.4 Stability budget 287
References 290
Chapter 8 Matched and matching filters 291
8.1 Uncompressed pulses 292
8.1.1 Rectangular transmitter pulse and rectangular filter 292
8.1.2 Rectangular transmitter pulse and Gaussian filter 295
8.1.3 Doppler frequency shift, detuning 298
8.1.4 Filtering after limiting, Dicke-fix receiver 298
8.2 Pulse compression using frequency modulation 301
8.2.1 Linear frequency modulation 301
8.2.2 Nonlinear frequency modulation 309
8.2.3 The effects of limiting before the pulse compression filter 311
8.2.4 General correlator 312
8.3 Discrete phase shift modulated pulse compression 312
8.3.1 Binary codes 315
8.3.2 Polyphase codes 321
8.4 Other forms of modulation 326
8.5 Negative phase sequence signals 326
8.6 Output signals 326
8.7 Figures affecting radar performance 327
8.7.1 Range budget 327
8.7.2 Accuracy and resolution budget 327
8.7.3 Stability budget 327
References 327
Chapter 9 Detectors 329
9.1 Incoherent detectors 331
9.1.1 Logarithmic intermediate frequency amplifiers 333
9.2 Coherent detectors 334
9.2.1 Ring modulator or demodulator 336
9.3 Vector detectors 338
9.3.1 Polar detectors 339
9.3.2 Cartesian or two-phase detector 339
9.4 Sampling waveforms and spectra 341
9.4.1 Simple or single phase sampling 341
9.4.2 Complex or two-phase sampling 343
9.4.3 Sampling at intermediate frequency 344
9.5 Measurement of noise 344
9.5.1 Gaussian noise 345
9.5.2 Rayleigh noise 346
9.6 Figures affecting radar performance 348
9.6.1 Range budget 348
References 348
Chapter 10 Analogue-to-digital conversion 349
10.1 Principle 349
10.2 Dynamic range 349
10.3 Nature and treatment of errors 350
10.3.1 Types of errors 350
10.3.2 Measurement of errors 352
10.3.3 Correction of errors 354
10.3.4 Analogue-to-digital conversion using intermediate frequency signals 355
10.4 Figures affecting radar performance 358
10.4.1 Range budget 358
10.4.2 Accuracy and resolution budget 360
10.4.3 Stability budget 360
References 361
Chapter 11 Signal processing 363
11.1 Altering the form of the video during one sweep 365
11.1.1 Limiting 366
11.1.2 Differentiation of the video: fast (or short) time constant 366
11.1.3 Pulse length (or width) discriminator 366
11.1.4 Logarithmic video and log FTC 366
11.1.5 Bandwidth or stretching of the video signals for display 369
11.1.6 Noise clipping 369
11.1.7 Constant false alarm rate processing by cell averaging 370
11.1.8 Gating the video 375
11.1.9 Combining the videos from several beams 377
11.2 Signal processing over a number of sweeps 378
11.2.1 Video integration 384
11.2.2 Binary integration 385
11.2.3 Rejection of echoes that have unwanted Doppler frequencies, moving target indicator 385
11.2.4 Doppler frequency processing which selects the Doppler frequencies of interest 407
11.2.5 Comparison of moving target indicators and detectors 432
11.3 Processing over many scans and maps 432
11.3.1 Area moving target indication (AMTI) or clutter map 433
11.3.2 Maps for a moving target detector 435
11.3.3 Quality selection 437
11.4 Airborne moving target signal processing 438
11.4.1 The TACCAR moving target indicator 438
11.4.2 Displaced phase center antenna 439
11.4.3 Pulse Doppler radars 442
11.4.4 Sideways-looking radars 443
11.5 Figures affecting radar performance 443
11.5.1 Range budget 443
11.5.2 Accuracy and resolution budget 444
11.5.3 Stability budget 444
References 444
Appendix 11A An approximation to solve for thresholds above clutter 445
Chapter 12 Threshold and detection 447
12.1 Dwell time and the number of echoes 447
12.2 False alarm probabilities, times, and thresholds 448
12.2.1 False alarm time 448
12.2.2 False alarm number 448
12.2.3 False alarm probability 449
12.2.4 Changing the threshold levels 452
12.3 Probability of detection 452
12.3.1 Marcum case: no fluctuation 453
12.3.2 Swerling case I: slow fluctuation 458
12.3.3 Swerling case II: fast fluctuation 464
12.3.4 Swerling case III: slow chi-squared fluctuation 468
12.3.5 Swerling case IV: fast chi-squared fluctuation 472
12.4 Comparison of probability of detection cases 475
12.4.1 Coherent integration: slow fluctuation 476
12.4.2 Noncoherent integration: slow fluctuation 476
12.4.3 Noncoherent integration: fast fluctuation 477
12.5 Joint probabilities of detection 478
12.5.1 Other forms of integration after the threshold 478
12.5.2 Frequency diversity radars 483
12.6 Useful approximations 485
12.6.1 Albersheim’s approximation for the Marcum case 485
12.6.2 Snidman’s approximation for the Marcum and Swerling cases 486
12.7 Figures affecting radar performance 487
References 487
Chapter 13 Determination of position 489
13.1 Fire control radars 489
13.1.1 Conical scanning 490
13.1.2 Amplitude monopulse receivers 490
13.1.3 Phase monopulse receivers 492
13.1.4 Measurement of range 493
13.1.5 Extracting the Doppler frequency 494
13.2 Sector scan radars 494
13.3 Fast scanning radars 494
13.4 Surveillance radars 495
13.4.1 Binary detection decisions 495
13.4.2 Maximum signal 496
13.4.3 Center of gravity or centroid 496
13.4.4 Monopulse angle measurement with search radars 497
13.5 Accuracy 497
13.5.1 Angular accuracies and root mean square aperture 500
13.5.2 Time accuracies and root mean square bandwidth 501
13.5.3 Frequency accuracy and root mean square signal duration 502
13.6 The display of position 502
13.6.1 Displays used to measure range 502
13.6.2 Displays for surveillance 502
13.6.3 Airborne displays 504
13.6.4 Displays for aiming weapons 504
13.6.5 Displays to indicate interference or jamming 506
13.6.6 Signals used for displays 506
13.7 Figures affecting performance 507
References 508
Chapter 14 Performance 509
14.1 Range 509
14.2 Accuracy 511
14.2.1 Bias errors 512
14.2.2 Random errors 512
14.3 Resolution 515
14.3.1 Resolution in range 517
14.3.2 Resolution in azimuth angle 517
14.3.3 Resolution in elevation angle 518
14.3.4 Resolution in Doppler frequency 518
14.4 Stability, the cancellation ratio 518
14.5 Interfering or jamming signals 519
14.5.1 Chaff or window 519
14.5.2 Active jamming 519
14.5.3 Deception jamming 520
14.6 Tables 521
14.6.1 Basic radar requirements 521
14.6.2 Derived characteristics 523
14.6.3 Factors for calculating range 523
14.6.4 Resolution 524
14.6.5 Accuracy 524
14.6.6 Stability 524
References 525
Chapter 15 Statistics 527
15.1 Terms 527
15.1.1 Mean and expected values 528
15.1.2 Variance 528
15.1.3 Standard deviation 529
15.1.4 Histogram and probability distribution 529
15.1.5 Cumulative distribution function 529
15.1.6 Percentiles and quartiles 530
15.1.7 Moment generating functions 530
15.1.8 Fourier transform 531
15.2 Families of distributions 534
15.2.1 Gaussian or normal distribution: two sided from -4 to +4 534
15.2.2 Log-normal distribution 537
15.2.3 Rayleigh distribution 538
15.2.4 Ricean distribution 541
15.3 Gamma distribution family: bounded on one side from 0 to 4 544
15.3.1 Erlangian distribution 546
15.3.2 Chi-squared distribution 547
15.3.3 Chi distribution 548
15.3.4 Negative exponential distribution 549
15.4 Other distributions bounded on one side 549
15.4.1 Weibull distribution 550
15.5 Discrete distribution: binomial distribution 551
15.6 Random numbers 552
References 553
Chapter 16 Transforms 555
16.1 Conventions for the Fourier transform 555
16.2 Some polyphase and single phase Fourier transforms 556
16.2.1 Single phase cosine wave 558
16.2.2 Single phase sine wave 559
16.2.3 Rectangular pulse 560
16.2.4 Time shift 561
16.2.5 Phase shift 563
16.2.6 Examples of Fourier transforms in the complex plane 563
16.2.7 Addition and subtraction 564
16.2.8 Differentiation 564
16.2.9 Convolution, the multiplication of Fourier transforms 565
16.2.10 Cross-correlation, multiplication with complex conjugates 568
16.2.11 Autocorrelation, multiplication with its own complex conjugate 569
16.2.12 Energy and power 570
16.3 Discrete Fourier transform 570
16.3.1 Differences between continuous and discrete transform functions 574
16.3.2 Fast transforms 576
16.4 Summary of properties of the Fourier transform 576
16.5 Tapering 577
16.5.1 Gains and losses 579
16.5.2 Spectral leakage or two-tone characteristics 584
16.5.3 Resolution 585
16.5.4 Example: von Hann and Hamming tapering functions 585
16.6 Relationships to other transforms 590
16.6.1 The z transform 590
16.7 The use of Fourier transforms for finite impulse response filters 592
16.7.1 Single-phase signal filtering 593
16.7.2 Video integration in a finite impulse response filter 597
16.7.3 Noncoherent moving target indicator finite impulse response filter 597
16.7.4 Polyphase signal filtering 599
References 600
Appendix 16A Complete correlation 601
Appendix A Language and glossary 603
A.1 Unified terminology 603
A.1.1 Military words that have been avoided 603
A.1.2 Unfortunate words 603
A.1.3 Technical words 604
A.1.4 Words retained 604
A.1.5 New words 605
A.1.6 Russian names 605
A.2 Glossary 605
A.3 Displays 614
A.3.1 Surveillance radars 615
A.3.2 Anti-aircraft (AA) artillery radars 615
A.3.3 Airborne intercept (AI) radars 615
A.3.4 Display types 615
A.3.5 Displays for showing the effects of jamming (military) 616
A.4 Symbols 617
References 617
Appendix B Tapering functions 619
B.1 Conventions and normalization 619
B.1.1 Scaloping loss and worst-case processing loss 621
B.1.2 Spectral leakage or two-tone characteristic 621
B.1.3 Other names used for tapering functions 621
B.2 Tapering functions 622
B.2.1 Trapezoidal tapering 622
B.2.2 (1 – 4p´²)n tapering. 626
B.2.3 Cosine to the power n tapering 629
B.2.4 Cosine on a pedestal tapering 633
B.2.5 Hamming, Blackman, and Blackman-Harris tapering 636
B.2.6 Truncated Gaussian tapering 646
B.2.7 Even Taylor tapering 649
B.3 Tapering with discrete elements 653
B.3.1 Dolph-Chebyshëv tapering for a discrete 10 element system 653
B.4 Tapering or illumination functions for circular antennas 657
B.4.1 Circular (1 - 4r´²)n tapering 657
B.4.2 Circular truncated Gaussian tapering 660
B.4.3 Circular Taylor tapering 662
B.5 Odd tapering functions 664
B.5.1 Odd rectangular tapering 664
B.5.2 Odd triangular tapering 667
B.5.3 Odd cosine to the power n tapering 669
B.5.4 Odd truncated Rayleigh tapering 671
B.5.5 Odd Taylor derivative tapering 673
B.5.6 Bayliss tapering 675
B.5.7 Zolotarëv tapering 679
References 681
Appendix C Frequency band letters 683
List of symbols 685
About the author 693
Index 695
:51bb
经典推陈再现!
:27bb:27bb
感谢楼主分享
顶一下,谢谢分享!
谢谢分享!!!!!!!!!!
楼主太牛了,谢谢分享!
好东西,大家来支持!!!:9de
果然是好东东,只见过第一版,今天算是开眼界了啊。。。
好东西啊,下了看一看
:21bb:21bb
谢谢慷慨的楼主
good good good
确实是本好书~~~支持一下~~
回复 1# masterchen
好东西,总的来说这本书很简单,但参考一下还是很不错的!
谢谢楼主,谢谢分享
楼主有好多书哟{:6_928:}
很不错,感谢楼主{:6_928:}
好东西啊,下了看一看
感谢楼主分享
强悍不需要理由,谢谢好书分享!
感谢楼主分享
非常好!找了半天了!
好书,谢谢分享!!!!!!
谢谢分享
好人啊! 感动!
学习学习
谢谢楼主分享
韩谢楼主·······
谢谢楼主
谢谢分享
Hao Shu kan kan!! Xie Xie!!
经典推陈再现!
哇,看着很给力的说~~
很强大,谢谢
{:soso_e179:}谢谢
谢谢楼主
谢谢楼主
谢谢楼主,好人啊!!!
好人,好书!
谢谢楼主
谢谢分享
只见过第一版
thank you for sharing