Knowledge Based Radar Detection, Tracking and Classification:Knowledge Based Radar Detection, Tracking and Classification (Adaptive and Learning Systems for Signal Processing, Communications and Control Series) (Hardcover)by
Fulvio Gini (Author),
Muralidhar Rangaswamy (Author)
Hardcover: 268 pages
Publisher: Wiley-Interscience (May 19, 2008)
Language: English
ISBN-10: 0470149302
ISBN-13: 978-0470149300
Product Dimensions: 9.4 x 6 x 0.7 inches
Product Description
This book brings together the key concepts essential for the application of Knowledge Based Systems (KBS) to radar detection, tracking, classification, and scheduling. It highlights the latest advances in the field and forecasts the impact of KB technology on future systems, including civilian, military, and homeland defense applications. Throughout the book, the authors offer examples of how KBS works and how it can dramatically improve radar performance and capability.
From the Back Cover
Discover the technology for the next generation of radar systems
Here is the first book that brings together the key concepts essential for the application of Knowledge Based Systems (KBS) to radar detection, tracking, classification, and scheduling. The book highlights the latest advances in both KBS and radar signal and data processing, presenting a range of perspectives and innovative results that have set the stage for the next generation of adaptive radar systems. The book begins with a chapter introducing the concept of Knowledge Based (KB) radar.
The remaining nine chapters focus on current developments and recent applications of KB concepts to specific radar functions. Among the key topics explored are:
- Fundamentals of relevant KB techniques
- KB solutions as they apply to the general radar problem
- KBS applications for the constant false-alarm rate processor
- KB control for space-time adaptive processing
- KB techniques applied to existing radar systems
- Integrated end-to-end radar signals
- Data processing with overarching KB control
All chapters are self-contained, enabling readers to focus on those topics of greatest interest. Each one begins with introductory remarks, moves on to detailed discussions and analysis, and ends with a list of references. Throughout the presentation, the authors offer examples of how KBS works and how it can dramatically improve radar performance and capability. Moreover, the authors forecast the impact of KB technology on future systems, including important civilian, military, and homeland defense applications. With chapters contributed by leading international researchers and pioneers in the field, this text is recommended for both students and professionals in radar and sonar detection, tracking, and classification and radar resource management.
[
本帖最后由 drjiachen 于 2008-12-15 11:05 编辑 ]
CONTENTS
Contributors xi
1 Introduction 1
Fulvio Gini and Muralidhar Rangaswamy
1.1 Organization of the Book / 3
Acknowledgments / 7
References / 7
2 Cognitive Radar 9
Simon Haykin
2.1 Introduction / 9
2.2 Cognitive Radar Signal-Processing Cycle / 10
2.3 Radar-Scene Analysis / 12
2.3.1 Statistical Modeling of Statistical Representation of
Clutter- and Target-Related Information / 13
2.4 Bayesian Target Tracking / 14
2.4.1 One-Step Tracking Prediction / 16
2.4.2 Tracking Filter / 16
2.4.3 Tracking Smoother / 18
2.4.4 Experimental Results: Case Study of Small
Target in Sea Clutter / 19
2.4.5 Practical Implications of the Bayesian Target Tracker / 20
2.5 Adaptive Radar Illumination / 21
2.5.1 Simulation Experiments in Support of Adjustable
Frequency Modulation / 22
2.6 Echo-Location in Bats / 23
v
2.7 Discussion / 25
2.7.1 Learning / 27
2.7.2 Applications / 27
2.7.2.1 Multifunction Radars / 27
2.7.2.2 Noncoherent Radar Network / 28
Acknowledgments / 29
References / 29
3 Knowledge-Based Radar Signal and Data Processing: A
Tutorial Overview 31
Gerard T. Capraro, Alfonso Farina, Hugh D. Griffiths,
and Michael C. Wicks
3.1 Radar Evolution / 32
3.2 Taxonomy of Radar / 34
3.3 Signal Processing / 35
3.4 Data Processing / 37
3.5 Introduction to Artificial Intelligence / 38
3.5.1 Why Robotics and Knowledge-Based Systems? / 39
3.5.2 Knowledge Base Systems (KBS) / 39
3.5.3 Semantic Web Technologies / 40
3.6 A Global View and KB Algorithms / 40
3.6.1 An Airborne Autonomous Intelligent
Radar System (AIRS) / 42
3.6.2 Filtering, Detection, and Tracking Algorithms and
KB Processing / 44
3.7 Future work / 49
3.7.1 Target Matched Illumination / 49
3.7.2 Spectral Interpolation / 49
3.7.3 Bistatic Radar and Passive
Coherent Location / 50
3.7.4 Synthetic Aperture Radar / 50
3.7.5 Resource Allocation in a Multifunction Phased
Array Radar / 50
3.7.6 Waveform Diversity and Sensor Geometry / 51
Acknowledgments / 51
References / 51
4 An Overview of Knowledge-Aided Adaptive Radar
at DARPA and Beyond 55
Joseph R. Guerci and Edward J. Baranoski
4.1 Introduction / 56
4.1.1 Background on STAP / 56
4.1.2 Examples of Real-World Clutter / 60
vi CONTENTS
4.2 Knowledge-Aided STAP (KA-STAP) / 61
4.2.1 Knowledge-Aided STAP: Back to “Bayes-ics” / 61
4.2.1.1 Case I: Intelligent Training and
Filter Selection (ITFS) / 62
4.2.1.2 Case II: Bayesian Filtering and Data
Pre-Whitening / 63
4.3 Real-Time KA-STAP: The DARPA KASSPER Program / 67
4.3.1 Obstacles to Real-Time KA-STAP / 67
4.3.2 Solution: Look-Ahead Scheduling / 67
4.4 Applying KA Processing to the Adaptive MIMO Radar Problem / 71
4.5 The Future: Next-Generation Intelligent Adaptive Sensors / 72
References / 72
5 Space–Time Adaptive Processing for Airborne Radar:
A Knowledge–Based Perspective 75
Michael C. Wicks, Muralidhar Rangaswamy,
Raviraj S. Adve, and Todd B. Hale
5.1 Introduction / 76
5.2 Problem Statement / 77
5.3 Low Computation Load Algorithms / 81
5.3.1 Joint Domain Localized Processing / 82
5.3.2 Parametric Adaptive Matched Filter / 84
5.3.3 Multistage Wiener Filter / 85
5.4 Issues of Data Support / 86
5.4.1 Nonhomogeneity Detection / 87
5.4.2 Direct Data Domain Methods / 89
5.4.2.1 Hybrid Approach / 90
5.5 Knowledge-Aided Approaches / 91
5.5.1 A Preliminary Knowledge-Based Processor / 92
5.5.2 Numerical Example / 94
5.5.3 A Long-Term View / 98
5.6 Conclusions / 99
References / 99
6 CFAR Knowledge-Aided Radar Detection and its
Demonstration Using Measured Airborne Data 103
Christopher T. Capraro, Gerard T. Capraro, Antonio De Maio,
Alfonso Farina, and Michael C. Wicks
6.1 Introduction / 103
6.2 Problem Formulation and Design Issues / 106
6.3 KA Data Selector / 107
CONTENTS vii
6.4 2S-DSP Data Selection Procedure / 109
6.4.1 Two-Step Data Selection
Procedure (2S-DSP) / 112
6.5 RP-ANMF Detector / 113
6.6 Performance Analysis / 114
6.7 Conclusions / 123
References / 123
Appendix 6A: Registration Geometry / 127
7 STAP via Knowledge-Aided Covariance Estimation and the
FRACTA Meta-Algorithm 129
Shannon D. Blunt, Karl Gerlach, Muralidhar Rangaswamy,
and Aaron K. Shackelford
7.1 Introduction / 130
7.2 The FRACTA Meta-Algorithm / 132
7.2.1 The General STAP Model / 132
7.2.2 FRACTA Description / 134
7.2.2.1 Reiterative Censoring / 135
7.2.2.2 CFAR Detector / 137
7.2.2.3 ACE Detector / 138
7.3 Practical Aspects of Censoring / 139
7.3.1 Global Censoring / 139
7.3.2 Censoring Stopping Criterion / 140
7.3.3 Fast Reiterative Censoring / 141
7.3.4 FRACTA Performance / 141
7.4 Knowledge-Aided FRACTA / 147
7.4.1 Knowledge-Aided Covariance
Estimation / 147
7.4.2 Doppler-Sensitive ACE Detector / 149
7.4.3 Performance of Knowledge-Aided FRACTA / 151
7.5 Partially Adaptive FRACTA / 156
7.5.1 Reduced-Dimension STAP / 157
7.5.2 Multiwindow Post-Doppler STAP / 157
7.5.2.1 PRI-Staggered Post-Doppler STAP / 159
7.5.2.2 Adjacent-Bin Post-Doppler STAP / 160
7.5.3 Multiwindow Post-Doppler FRACTA / 160
7.5.4 Multiwindow Post-Doppler FRACTA þ KACE / 161
7.5.5 Performance of Partially Adaptive
FRACTA þ KACE / 161
7.6 Conclusions / 163
References / 163
viii CONTENTS
8 Knowledge-Based Radar Tracking 167
Alessio Benavoli, Luigi Chisci, Alfonso Farina, Sandro Immediata,
and Luca Timmoneri
8.1 Introduction / 167
8.2 Architecture of the Tracking Filter / 169
8.2.1 Filtering / 169
8.2.2 Data Association / 172
8.2.3 Track Initiation / 174
8.3 Tracking with Geographical Information / 176
8.3.1 Processing of Geographical Maps / 178
8.3.2 Hard Classification / 179
8.3.3 Fuzzy Classification / 179
8.3.4 Application of the KB to the
Tracking System / 180
8.3.5 Hard Classification: DMHC and
DTPHC / 182
8.3.6 Fuzzy Classification: DMLR
and a-NNCJPDA / 183
8.4 Knowledge-Based Target ID / 184
8.5 Tracking with Amplitude Information / 185
8.6 Performance Evaluation / 187
8.6.1 Aircraft Simulation Results / 189
8.6.2 Number of False Tracks and
Tentative Tracks / 192
8.6.3 The Use of Amplitude Information / 193
8.7 Conclusions / 194
Acknowledgments / 194
References / 195
9 Knowledge-Based Radar Target Classification 197
Igal Bilik and Joseph Tabrikian
9.1 Introduction / 197
9.2 Database / 200
9.3 Target Recognition by Human Operator / 203
9.4 Classification Scheme / 203
9.4.1 Knowledge-Based Models / 205
9.4.2 Statistical Knowledge-Based
Approach / 206
9.5 Physical Knowledge-Based Approach / 207
9.5.1 Physical Model Construction / 208
9.5.2 Indirect Concept / 213
9.5.3 Direct Concept / 214
CONTENTS ix
9.6 Combined Approach / 215
9.7 Experimental Results / 215
9.7.1 Statistical Knowledge-Based Classifier for the
Seven-Class Problem / 216
9.7.2 Physical Knowledge-Based Classifier for the
Three-Class Problem / 218
9.8 Conclusions / 222
References / 223
10 Multifunction Radar Resource Management 225
Sergio Luis de Carvalho Miranda, Chris J. Baker, Karl Woodbridge,
and Hugh D. Griffiths
10.1 Introduction / 225
10.2 Simulation Architecture / 229
10.2.1 Priority Assignment / 230
10.2.2 Surveillance Manager / 230
10.2.3 Track Manager / 230
10.2.4 Radar Functions / 231
10.2.5 Operator and Strategy / 231
10.3 The Schedulers / 231
10.3.1 Orman et al. Type Scheduler / 231
10.3.2 Butler-Type Scheduler / 232
10.4 Comparison of the Scheduling Algorithms / 232
10.4.1 Underload Situations / 234
10.4.2 Overload Situations / 238
10.5 Scheduling Issues / 243
10.6 Prioritization of Radar Tasks / 244
10.6.1 Prioritization of Tracking Tasks / 245
10.6.2 Prioritization of Sectors of Surveillance / 246
10.7 Examination of the Fuzzy Logic Method / 248
10.8 Comparison of the Different Prioritization Methods / 253
10.9 Prioritization Issues / 261
10.10 Summary and Conclusions / 262
References / 262
Index 265
期待分享,繁荣微网
Knowledge Based Radar Detection, Tracking and Classification
ص
[ 本帖最后由 drjiachen 于 2008-12-15 15:51 编辑 ]
好书籍,谢谢分享!
:lol :lol :lol :lol :lol :lol
这本书总算让我等到了!!!!!!
9月看到书的介绍就一直在找也没找到
好新的书啊,楼主现在是发书专业户
哈哈,太好了,找了N久,终于找到
谢谢楼主!!!!!!!!!!!!!!!!!!!!!!!!!!!
好书籍,谢谢分享!
:11bb :11bb :11bb :11bb :11bb
强人!:11bb :27bb :29bb :30bb :31bb
好书! 感谢楼主提供分享!!!!
我相信斑竹都是推荐好书,下载下来看一看,谢谢啦
好书籍,谢谢分享!
:30bb
thank you for your uploading,it is good
感谢楼主的分享精神~~~~~~~~~~~~
谢谢了!!这本书应该是本非常好的书
thanks very much!!!!!!!!!!!!!!!!!!!!
:11bb :27bb :29bb :30bb
谢谢!!!!!!!!!!!!
太感谢了,这本书正是我想要的,再次感谢
好书,非常感谢楼主的共享!!!!!!
:11bb :11bb :11bb
谢谢你啊,好人啊!!!!!!!!!!!!!!!!!!!!
这本书真新!:11bb :11bb
好书,谢谢楼主无私奉献。。。。。。。。
好书! 感谢楼主提供分享!!!!
好书籍,谢谢分享!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
这本书太好了
这么新
:11bb :27bb :29bb :30bb
谢谢楼主无私奉献!!!!!!!!!!!!!!!!!!
好书啊~
thx楼主!~
谢谢!!!!!!!!!!!!!!!!!!!!!!!!
:11bb :27bb :29bb :30bb :31bb
谢谢了!这本书应该是本非常好的书,希望有所收获!
此主题内容以前似乎以讲座报告形式出现,现在出版图书更方便,谢谢!
感觉里边很多公式有问题,漏字现象比较严重…………………………
好书好书………………………………
好贴,     s   谢谢发贴       .
Knowledge Based Radar Detection:9de :9de :9de :9de
:27bb :27bb :27bb :27bb :27bb :27bb :27bb
seesee......................
:21de :21de :21de
好新的书啊,楼主现在是发书专业户!
哈哈,太好了,找了N久,终于找到!
哈哈,太好了,找了N久,终于找到
关于雷达情报侦察领域的书,国内太少了,从事这个行业的研究所都把其作为核心技术加以严格保密!
能找到这样说我太高兴了,太感谢楼主了!
谢谢楼主分享....:30bb :30bb
好资料,谢谢楼主共享,thank you very much!
谢谢楼主:27bb :27bb :27bb :27bb
好书,谢谢,下载学习学习
:11bb :8de :4de :31bb
好书啊,谢谢分享
xiexie
haoren a
怎一个谢字了得!!!!!!!!!!!!
非常感谢楼主的分享
谢谢了!!一直在找啊
谢谢了!!这本书应该是本非常好的书
楼主辛苦了
谢谢谢谢,什么都有啊
好书,谢谢!!!!!
多谢楼主 分享好书~!
:bde:46bb
非常棒的一本書籍
謝謝樓主的分享
谢谢楼主!!!!
好书分享。。。。
it is very good!
下来看看!!!!!!!!!!!!!!!!!!!
好书,谢谢楼主啦
监视和目标探测,先下载学习学习,应该是本好书!!
感谢楼主分享好书
good good good
学习ing,谢谢!
非常感谢楼主的分享
aaaaaaaaaaaaa
gooooooooooood thx a lor
新书下来学习了解
:53bb:15bb
多谢多谢~真的很有用啊
看看 学习一下 内容
谢谢楼主。
好东西,顶一个
Good book, written by F. Gini and Mura Rangaswamy.
多谢多谢 好东西啊,支持楼主
多谢楼主分享...
这书真的不错,谢谢分享
好新的书啊,楼主现在是发书专业户{:7_1235:}
好资料,谢谢楼主提供分享!
{:7_1234:}
Thanks a lot. It is really a good book.
很好的电子书啊!!!!
:19bb:49bb
{:7_1235:}
谢谢分享
谢谢,欣赏楼主
费劲千辛万苦 才走到这一步
谢谢谢谢谢谢
很不错
好书籍,谢谢分享
thanks
{:7_1234:}{:7_1234:}{:7_1234:}
Multiple Hypothesis Tracking System Design and Applcation
谢谢楼主!!!!!!!!!!!!!!!!!!!!!!!!!!
好书,期待好久了啊!{:7_1234:}{:7_1234:}{:7_1234:}
辛苦!辛苦!!!
It is a good book, thanks!
very nice! I like it!
:16bb:16bb:16bb
好書趕快下載
感謝樓主分享
{:7_1234:}
稍有点远,学习下,希望能找到近的研究领域
啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦
thank you
这本书总算让我等到了!!!!!!
感谢楼主{:1_1352:}
非常好,感谢
这书真是值了
这书不错啊
雷达检测与识别的书真是不多啊!!!
good book
好东西。先收下了。
最近在找跟踪相关的书籍,谢谢分享!
回长春采购从共和国采光好